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We introduce some identities for the derivative of a trigonometric polynomial
which are obtained from the identity of Riesz. We then use these new identities to
derive some inequalities for derivatives of trigonometric and algebraic polynomials.
Among our results are a weighted U inequality relating the derivative of a
trigonometric polynomial to its U' modulus and simple proofs for the inequalities
of Brudnyi and Dzyadyk. We are able to give values to the constants in these
inequalities. ,I' 1995 Academic Press. Inc

1. SOME OBSERVATIONS BASED ON THE IDENTITY OF RIESZ

The identity of Riesz [7] gives the derivatives of an arbitrary
trigonometric polynomial <1>", of degree at most m in the manner

I 2m ('''( I )2)<1>~,(z)=- L: <1>",(z+tk ) (_I)k+'/ sin-tk '
4m k~ 1 / 2

(1)

where tk := (2k - I )n/2m. Setting
establishes that

<1>m(Z) = (l/m) sin m::: and ::: = 0

1 2m !(. I )2
I =--,2 L: 1,,/ Sill 2- t k ,

4m k=l

a useful observation.
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Some new identities can be obtained from (I), by making specific choices
of m and <Pm. First of all, we may set m := 2n, and then

(2k-l)n
t k :=

2m

(2k-l)n

4n

(3)

Now we will assume that ¢,,(::) is an arbitrary trigonometric polynomial of
degree at most n and choose

(
sin( 11::/2) )2

<P m(::) = ¢,,(::) n sin(::/2) ,

noting that <P~, (0) = cP;,(0 ). For:: = 0 we thus obtain

, I 2m (Sin(nt k/2))2 (_l)k+l
¢,,(O) =4- L ¢,,(t k ) . .. 2'

m k~ I n sm(tk!2) (sm(l/2) td

Finally, since ¢" was arbitrary, we may set <p,,(::):= T,,(O+::), any polyno­
mial of degree at most n, and we obtain

,1 2m (Sin(nt k/2))2 (_l)k+l
T,,(O) =- I T,,(fJ+ td O'

4m k= I n sin(tk/2) (sin(l/2) td-

The derivation of (3) has been given in our recent contribution [3].
Clearly, it is also possible to choose m = (r + 2) n for r = 0, '" and

Then one obtains

(2k-l)n
tk :=

2m

(2k-l)n

2(r + 2) n
(4)

(5)
, 12m . (Sin(ntk/2))2Y+2 (_l)k+l

T,,(O)=- L T,,(fJ+td .. . 2'
4mk~1 nSm(tk/2 ) (sm(I/2)tk )

It is of course well known that from (1), (2), and the triangle inequality,
the inequality of Bernstein follows immediately. Here, we show that the
identities (3) and (5) can be used to prove some other inequalities
involving derivatives.

2. AN INEQUALITY FOR TRIGONOMETRIC POLYNOMIALS

First of all, (3) can be rewritten (using (3) for T" == I ) as

I I 2m (Sin(l1tk/2))2 (_l)k+l
T,Je) =-4 L (T,,(e + td - T,,(e)) . ( /2) (. (1/2) )2' (6)

m k= I n sm tk sm tk
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From (6) we obtain immediately

Using (2) and recalling that m = 2n in (6), we can conclude that

in which we are free to take the maximum for k ~ m instead of 2m by
exploiting the periodicity of Til" Using sin t < t for t > 0 and standard
properties of the modulus of continuity, we obtain

( n) sin 2(ntd2)
IT;,(O)I ~ 2n max(2k -1) w T,,; - '/2 2'

h;m 4n (n sm(tk ))

Now for arbitrary indices k it is true that

and for the indices k ~ 2 we can exploit this to establish

( n) sin
2
(ntd2) (n )

2n max (2k - 1) w T,,; -4 'I?) 2 ~ 6n w -4 .
k ~ I. 2 n (n sm(t k _ ) n

For all k~m we may of course use the fact that sin t~(2In)t for
o~ t ~ n12, to obtain

which leads to a less sharp estimate for k = 1,2. However, we may estimate
sin2(nt,/2)<7/8 and sin2(nt 4 /2) < 1/2 and in general sin2(ntkI2)~1 to
obtain

Therefore we have shown that

IT~({J)I ~ 6n w (Til; ~).
4n

(7)
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The constant in the inequality (7) is good but not sharp; Stechkin [8J
has obtained the similar inequality

in which L1 11 (f, t) = f( t + h) - f( t), and the choice of h = n/4n gives a better
estimate than (7). However, the argument by which (7) has been reached
also applies in a much wider context. Let p represent an arbitrary Borel
measure defined on the interval [0, 2n]. Defining for I ~ p < CfJ the norm

Ilfll".!' = ((' If(O)!" dP ) 1/"

and defining a modulus

wf'.Il(j;h):= sup Ilf(O+s)-f(O+t)II".!',
I.' -11,;;11

we obtain by exactly the same argument the following

THEOREM I. Let Tn denote an arbitrary trigonometric polynomial (l
degree at most n, and let p be an arbitrary Borel measure. Then for
I ~ p < oc we have

(8)

3. THE INEQUALITY OF BRUDNYI

Brudnyi's inequality gives a "local" estimate for the magnitude of
derivatives of an algebraic polynomial P n (x), in the following manner:

THEOREM (Brudnyi [4 J). Let Pn(x) be an algebraic pol.vnomial of degree
at most n which satisfies on [ - I, I] the inequality

(9)

in which q is a nonnegative integer and w is a modulus of continuity. Then
there is an absolute constant Cq such that

(10)
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We will prove this inequality using (5) and give explicit estimates for the
constants Cq .

Proof We identify xE[-I,I] with cosO for OE[O,n], obtaining
TI/(O) := PI/(cos f)). Then P;.(x) = T;,(O)/ -sin 0, whence using (5) and
m = (r + 2) 11 and the points tk defined by (4)

Therefore

I
IP;,(cosO)I~4 . f)

msm

x ~ (( [sin( 0 + tdl/l1) + (1/11.
2 ))q w( ( [sin( 0 + tdl/l1) + (lln 2

))

k'-::t (n smUkI2 )fr+2

sin 2r + 2( ntd2)
x . . , .

(sin( 1/2) tk )"

Using (2) it is clear that

m
IP;,(cos 0)1 ~---:--a

sm {I

(( Isin( 0+ tk )l/n)+ ( I/n2 W w( (lsin(O + tk )l/n) +( I/n 2
))

x max "k,,;2m (11 sin(tk!2))2r+-

(12)

To estimate the indicated maximum, we begin by assuming that
sin e~ (lin). Since m = (r + 2) n, it is advantageous to choose r as small as
possible.

Beginning with the case q = 0, we should choose r = O. We obtain from
(12) that

I ' 0 2n (1 !Sin(O+tdl +(1/n))
PIl( cos )I~ ---=--0 max + . e Ism k sm + (1 n)
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Using now the fact that

Isin(O + tk)1 ~ Isin 01 +12 sin il
we can obtain for sin 0l( I In) the estimate

, 6n (Sin 0 I)
IP,,(cos 0)1 ~-:--ew --+"sm n n-

from which

279

(
sin (J I)-I (Sin 0 I)

IP~(cos 0)1 ~ 12 --+, w --+2"
n n- n n

for
. 1

sm O~-.
n

(13 )

In order to obtain a similar estimate in the case that q::= 0 but when
sin (} ~ ( IIn), it is useful to obtain first a uniform estimate for P;,( cos 0)
which is valid for sin e~ (1 In). Beginning from (12) we obtain

JP
I 0 I 2n (1 Isin(O + tdl + (lin)) sin

2
(ntkf2) ( 1),,( cos ) ~ -.- max + , . 2 W, ,

sm 0 k (lIn) n- sm (tkf2) n-

and we obtain from this

provided
. 1
smO~­

n
(14 )

Now there is a uniform constant M such that, if p" is a polynomial of
degree at most n, then

II p" II [- I. I] ~ Mil p" II [-1 + 11/,,'1. I - (1/"')]·

More exactly (cf. Timan [10J, 2.9(9) and 4.8(39)), it follows in our present
context from ( 14) that

liP;,11 [-I. I] ~ 10/1
2C2n~ I) w C2). (15 )

It follows now from (15) combined with (13) that on the whole interval
[ -1, 1J the inequality

'. (n 2 )(fi=? 1)-1 (.)I-x 2 1)
IP,,(x)I~20 n2_1 /1 +/12 w n +/12 (16)

is satisfied, and we have demonstrated the inequality of Brudnyi for the
case q::= O.
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We move now to the case q> 0, establishing the inequality first for the
case that 0;:::, (1ln). It is advantageous to set r := [qI2] in this case, and,
inspecting the inequality (12) and referring to the argument leading up to
( 13), it is clear that we can obtain the estimate

IP'( (})1,e::::3(r+2)n
n cos -.-: . fJ

sm

« Isin(fJ + tk )lln) + (l/n 2W w«sin O/n) + (1/n 2))
x max .

k (n sm(td2))2r +2

(

• 0 0 ntk )
x Sln

d +- 2 . (17)

Observing that 2r = q if q is even and 2r + I = q if q is odd, we need now
to estimate

3(r + 2) n (Sin () +~)q
sin () n n2

Clearly, this expression is bounded for sin {);:::, ( I In) by

(
sin (] I )q- I

6(r+2) -n-+ n2

x max (ISin fJ cos tk1.+ leas fJ sin tk1+ (1In))q Isin.q(ntd2)1 ,
k sm(}+(1/n) !nsm(tk/2W

which in turn is bounded by

6( 2) (
sin fJ I )q-l (I . tk)q Isin q (nfd2)1

r + --+- max + n sm -
n 11

2
k 2 In sin(tk/2W'

and we arrive at the estimate

(
vlI-X2 1)

xw +-
n n2

-- I
for .j1_x2 ;:::'_.

11
(18)

Several methods are available (with some sacrifice to the constant) for
extending the estimate (18) from the subinterval [-I + (lln 2), 1-{1/n2)]
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to the entire interval [ -1, 1]. Perhaps the simplest of these to carry out
is to use (5) twice, representing the second derivative of a trigonometric
polynomial as a double sum. Then the derivative of an algebraic polyno­
mial Pll(x) can be effectively estimated for x near ± 1 by the second
derivative of the related trigonometric polynomial TlI( 0). It should be clear,
however, that this method will lead to a constant approximately equal to
the square of the constant in (18). A second method is to obtain a uniform
estimate of the form (15) for the qth derivative of P lI , then to integrate
repeatedly until an estimate for P:, is reached. This method is much more
complicated than the first and is also numerically quite ineffective, since the
cost incurred by taking q derivatives cannot be recovered.

A variant of the method followed in Timan [10], p. 221-222 seems to
be more efficient than all of these. First, one must obtain an estimate in the
spirit of ( 14), the proof of which is essentially a repetition of previous steps:

([ J )(
I}=-? l)q-1

IP:,( x) I :>;; 5 . 2q + 1 • ~ + 2 v 1-: .\ + n 2

~ I
for v 1 - x- ~ -.

n
(19)

The domain of validity of this inequality includes the interval
[-I+(I/n 2),I-(l/n 2

)].

Now one defines a complex function, analytic outside of the interval
[ -I + (l/n 2

), 1 - (l/n 2
)], continuous on the interval, and attaining its

maximum modulus on the interval. The function is

in which

Noting that

IWll (=)I=1

for =real and lying in the closed interval [-I + (1/n 2
), 1-(1/n2

)], and
that

for
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we obtain immediately for J ~ - x 2 ~ (1/n) the estimate

\

'1 P;,(:;) II
x ,,[ Wn(:;)Jn (JI _ (1/11 2 ) _:;2 + (I/n))q-l II' (20)

in which the norm signifies the maximum modulus of the function. Since
this norm is attained on the interval [-I + (1/n 2), I-(1/n2 )J, we will in
the remainder of the proof assume that :; lies in this interval. Because
on this interval IWn(:;)1 = 1, we can also omit WIl(z) in obtaining the
remaining estimates.

To complete the estimate in (20), we must first estimate the factor
IWn(x)ln. This quantity is clearly maximized if Ixl = ± 1, in which case we
obtain

1
for 1-2~lxl~1.

n

Therefore, from (20) combined with (19) we can obtain

I
for JI-x2~-.

n

(21 )

It remains to notice that

and we can obtain from (21) the estimate

x W (~2) ~ 1for v I-x ~-.
n

(22)

Combining (22) with (18), we obtain an estimate which must hold on the
entire interval [ - I, 1]. This completes the proof of Brudnyi's inequality.
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4. THE INEQUALITY OF DZYADYK

The inequality of Dzyadyk may be stated as follows:

283

THEOREM (Dzyadyk). Let p,J x) be an algebraic polynomial o.f" degree at
most n which satisfies on [ - I, I] the inequality

. (j1=7 I)qIP,,(.x)1 ~ +,
n n'

in which q is a nonnegative integer. Then

(23)

(24)

Instead of a modulus, co, one has here a constant. Otherwise, the proof
is quite similar to that for Brudnyi's inequality. Indeed, the constants are
smaller because one does not need to deal with co. For example, the
constant in the case q = 0 in Dzyadyk's inequality comes directly from the
Markov-Bernstein inequality. Rather than to go through details of
the proof of Dzyadyk's inequality here, we will prove two slightly more
specialized results which have obvious usefulness in estimating the error in
simultaneous approximation of derivatives by linear projections with
augmented Hermite interpolation ± 1. Such approximation techniques
have been developed in Balazs and Kilgore [I] and [2], Kilgore and
Prestin [5], and tested with good results in Tasche [9], but the constants
which govern the error estimates are as yet only known to exist. Other
results similar to what follows are to be found in Rahman [6].

THEOREM 2. Let P,,( x) be an algebraic po(vnomial 0.( degree at most 11

which sat/4ies on [ - 1, 1] the inequality

(j1=7)q
IP,,(x)1 ~ n

in which q is a positive integer and

(25)

as x -+ ± 1. (26)

Then

n-q (JI-X2)Q-1
IP;,(x)1 ~ (q + 1) --n-· n· (27)
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Prool We replace x by cos O. Then we define a trigonometric polyno­
mial

0) = ~II( cos 0)
TII( . q IJsin 1I

of degree at most n - q. We then note that

whence

T' (0) = P;,( cos 0)
II sin q -10

cos OPIII cos 0)
q sin 0 sin q {} ,

(28)

I
P;,(COS {))I,:::: IT' {} I ICOS {}P,,(cos fl)1

. q - 1 ('l "" II() + q . Il . q ('J .SIn I Sin 1I Sin I

(29)

Now, we need to estimate the second term on the right in (29). We note
first that

TII(O) = TII(n) = O.

Thus, for 0 < {} < (n/2) we use 0 < 0 < tan () and the theorem of Rolle to
make the estimate

I
COS{}PII(COSO)IIT,JO)!_ I I. 0 . q {} < Il - ITn( {} I ) ,SIn Sin 1I

in which 0 < OJ < O.
Now it follows from the definition of T" that

(30)

and therefore we can conclude from (30) and the inequality of Bernstein
that

I
COS {}P,,(cos {})j 1

. {}' 0 «n-q)-.
~n ~nq nq (31 )

The estimate (31) in in fact valid on the entire interval [0, n], since it can
be obtained for (n/2) < 0 < n by a similar sequence of steps.
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From (29) and (31) it follows in turn that

n - q (Sin O)q - I
IP;,(cosO)I~(q+I)-n-' -n- ,

and (27) is established. This ends the proof of Theorem 2.
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THEOREM 3. Let Pn(x) be an algebraic polynomial of degree at most n
which sati.\fies on [ - I, I] the inequality (25), that

(~)qIPnCx-JI ~ n·

in which q is a positive integer. Then

n-q (~)q-l
IP~(x)I~(q+I)-n-' n' holds for odd q

(32)

(33)

and

n-q (JI-x2)q-l qlxl (~)q-2
IP;Jx)1 ~--. +-,-.

n n n- n

The constants in these tlVO inequalities are best possible.

holds for even q.

(34)

Proof We first notice that, with x = cos 0 and q odd, the polynomial
n-qsinqOsin(n-q)O is extremal in (33), and with q even the polynomial
n-qsinqOcos(n-q)O is extremal in (34). These observations will show
that the stated constants in both inequalities are best possible, when com­
bined with the rest of the proof.

Theorem 3 follows immediately from Theorem 2 if q is odd, since in that
case (26) follows automatically. On the other hand, if q is even the polyno­
mial Pn satisfying (25) may not satisfy (26). To remedy this situation, we
must first notice that, since P" satisfies (25), we can still define T,,( 0) as in
the proof of Theorem 2 by

T 0 _ P,,(cos 0)
n( ) - . q 0 .

Sill

We note that as before Tn is a trigonometric polynomial of degree at most
n - q and satisfies

I
II T" II ~-.

nq
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Then we have

and therefore

BALAzs AND KILGORE

. . PI/(cosO)
SIn OTI/(O) = . ··1 (}'

smq

P;,(COS 0)

sin q - 20

But then

cos 0 PI/(COS 0)
(q-l) . qo

SIn
sin OT;,( 0) + cos OT,.( f)).

- p;.( cos 0) = sin q
- 1 OT;,( fJ) + q cos OTI/( 0) sin q

- 20,

and we obtain, using Bernstein's inequality,

from which (34) follows immediately. This ends the Proof of Theorem 3.
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